Onset of Tropical Cyclone Rapid Intensification: Evaluating the response to Length Scales of Sea Surface Temperature Anomalies.
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Onset of Tropical Cyclone Rapid Intensification: Evaluating the response to Length Scales of Sea Surface Temperature Anomalies.

Filetype[PDF-28.10 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Predicting the rapid intensification (> 15.0 m s−1 increase in 10m wind speed over 24 hours or less) of tropical cyclones (TC) remains a challenge in the broader context of numerical weather prediction largely due to their multiscale dynamics. Ocean observations show that the size and magnitude of sea surface temperature (SST) anomalies associated with cold wakes and ocean eddies play important roles in TC dynamics. In this study, a combination of spectral and structure function analyses is utilized to generate realistic realizations of multiscale anomalies characteristic of the SST conditions in which Hurricane Irma (2017) underwent rapid intensification (RI). We investigate the impact of the length scale of these SST anomalies and the role of translation speed on the variance in RI onset timing. Length-scale-induced convective asymmetries, in addition to the mean magnitude of SST anomalies beneath the storm eye, are shown to modulate the variance in RI onset timing. The size of the associated SST length scales relative to the storm size is critical to the magnitude of variance in RI onset timing, as smaller length scales are shown to lack the spatial extent required to induce preferential convective asymmetries. Storm translation speed is also shown to influence the variance in RI onset timing for larger length scale ensembles by altering the exposure time of the eye to these SST anomalies. We find that an interplay between SST-induced convective asymmetries, the magnitude of SST anomalies underneath the eye/eye-wall, and storm translation speed play crucial roles in modulating the variance in RI onset timing.
  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences (2023)
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1