The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
The Indian Summer Monsoon Intraseasonal Oscillations in CFSv2 Forecasts: Biases and Importance of Improving Air–Sea Interaction Processes
-
2018
-
-
Source: Journal of Climate, 31(14), 5351-5370
Details:
-
Journal Title:Journal of Climate
-
Personal Author:
-
NOAA Program & Office:
-
Description:Northward-propagating Indian summer monsoon intraseasonal oscillations (MISOs) are a major origin of the active–break spells of the monsoon rainfall. Forecast results for 28 active and 27 break spells from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), during 1999–2010 are analyzed. CFSv2 forecasts are able to represent the propagation of MISOs from the equator to central India, showing improvements in many aspects compared to its previous version. Systematic biases for MISOs, however, still exist, exhibiting apparently weaker amplitude and slower northward propagation compared to observations. The eastern Arabian Sea (EAS)–western Bay of Bengal (WBB) region (EAS–WBB region; 12°–20°N, 65°–85°E) is found to be critical for the MISO prediction. In that region, the forecast and observed MISO trajectories begin to bifurcate from each other, and forecast errors grow rapidly. Further diagnosis reveals that local air–sea interaction in that region is severely underrepresented in CFSv2. Sea surface temperature (SST) response to surface heat flux forcing and convection response to SST forcing are both too weak, leading to the underestimated MISO amplitude. The relationship between precipitation and SST in CFSv2 is much more chaotic than in observation. The misrepresentation of air–sea coupling results in longer MISO periods in the EAS–WBB region, manifesting as slower propagation and delayed arrival of MISOs in central India. Refining the air–sea coupling processes is crucial for improving the CFSv2 forecast. This includes taking into account the ocean skin layer, better resolving the diurnal cycle, and improving the ocean model physics.
-
Keywords:
-
Source:Journal of Climate, 31(14), 5351-5370
-
DOI:
-
ISSN:0894-8755;1520-0442;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: