Strong Red Noise Ocean Forcing on Atlantic Multidecadal Variability Assessed from Surface Heat Flux: Theory and Application
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Strong Red Noise Ocean Forcing on Atlantic Multidecadal Variability Assessed from Surface Heat Flux: Theory and Application

Filetype[PDF-6.36 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The role of ocean forcing on Atlantic multidecadal variability (AMV) is assessed from the (downward) heat flux–SST relation in the framework of a new stochastic climate theory forced by red noise ocean forcing. Previous studies suggested that atmospheric forcing drives SST variability from monthly to interannual time scales, with a positive heat flux–SST correlation, while heat flux induced by ocean processes can drive SST variability at decadal and longer time scales, with a negative heat flux–SST correlation. Here, first, we develop a theory to show how the sign of heat flux–SST correlation is affected by atmospheric and oceanic forcing with time scale. In particular, a red noise ocean forcing is necessary for the sign reversal of heat flux–SST correlation. Furthermore, this sign reversal can be detected equivalently in three approaches: the low-pass correlation at lag zero, the unfiltered correlation at long (heat flux) lead, and the real part of the heat flux–SST coherence. Second, we develop a new scheme in combination with the theory to assess the magnitude and time scale of the red noise ocean forcing for AMV in the GFDL SPEAR model (Seamless System for Prediction and Earth System Research) and observations. In both the model and observations, the ocean forcing on AMV is in general comparable with the atmospheric forcing, with a 90% probability greater than the atmospheric forcing in observations. In contrast to the white noise atmospheric forcing, the ocean forcing has a persistence time comparable or longer than a year, much longer than the SST persistence of ∼3 months. This slow ocean forcing is associated implicitly with slow subsurface ocean dynamics. Significance Statement A new theoretical framework is developed to estimate the ocean forcing on Atlantic multidecadal variability form heat flux–SST relations in climate models and observation. Our estimation shows the ocean forcing is comparable with the atmospheric forcing and, in particular, has a slow time scale of years.
  • Keywords:
  • Source:
    Journal of Climate, 36(1), 55-80
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1