Analysis of the Planetary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with Lidar and High-Resolution WRF Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Analysis of the Planetary Boundary Layer Height during DISCOVER-AQ Baltimore–Washington, D.C., with Lidar and High-Resolution WRF Modeling

Filetype[PDF-2.48 MB]


  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The daytime planetary boundary layer (PBL) was examined for the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Baltimore (Maryland)–Washington, D.C., campaign of July 2011 using PBL height (PBLH) retrievals from aerosol backscatter measurements from ground-based micropulse lidar (MPL), the NASA Langley Research Center airborne High Spectral Resolution Lidar-1 (HSRL-1), and the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. High-resolution Weather Research and Forecasting (WRF) Model simulations with horizontal grid spacing of 1 km and different combinations of PBL schemes, urban parameterization, and sea surface temperature inputs were evaluated against PBLHs derived from lidars, ozonesondes, and radiosondes. MPL and WRF PBLHs depicted a growing PBL in the morning that reached a peak height by midafternoon. WRF PBLHs calculated from gridded output profiles generally showed more rapid growth and higher peak heights than did the MPLs, and all WRF–lidar differences were dependent on model configuration, PBLH calculation method, and synoptic conditions. At inland locations, WRF simulated an earlier descent of the PBL top in the afternoon relative to the MPL retrievals and radiosonde PBLHs. At Edgewood, Maryland, the influence of the Chesapeake Bay breeze on the PBLH was captured by both the ozonesonde and WRF data but generally not by the MPL PBLH retrievals because of generally weaker gradients in the aerosol backscatter profile and limited normalized relative backscatter data near the top height of the marine layer.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 57(11), 2679-2696
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1