Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks

Filetype[PDF-5.09 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Description:
    Conventional statistical postprocessing techniques offer limited ability to improve the skills of probabilistic guidance for heavy precipitation. This paper introduces two artificial neural network (ANN)-based, geographically aware, and computationally efficient postprocessing schemes, namely, the ANN-multiclass (ANN-Mclass) and the ANN–censored, shifted gamma distribution (ANN-CSGD). Both schemes are implemented to postprocess Global Ensemble Forecast System (GEFS) forecasts to produce probabilistic quantitative precipitation forecasts (PQPFs) over the contiguous United States (CONUS) using a short (60 days), rolling training window. The performances of these schemes are assessed through a set of hindcast experiments, wherein postprocessed 24-h PQPFs from the two ANN schemes were compared against those produced using the benchmark quantile mapping algorithm for lead times ranging from 1 to 8 days. Outcomes of the hindcast experiments show that ANN schemes overall outperform the benchmark as well as the raw forecast over the CONUS in predicting probability of precipitation over a range of thresholds. The relative performance varies among geographic regions, with the two ANN schemes broadly improving upon quantile mapping over the central, south, and southeast, and slightly underperforming along the Pacific coast where skills of raw forecasts are the highest. Between the two schemes, the hybrid ANN-CSGD outperforms at higher rainfall thresholds (i.e., >50 mm day−1), though the outperformance comes at a slight expense of sharpness and spatial specificity. Collectively, these results confirm the ability of the ANN algorithms to produce skillful PQPFs with a limited training window and point to the prowess of the hybrid scheme for calibrating PQPFs for rare-to-extreme rainfall events.
  • Source:
    Journal of Hydrometeorology, 23(9), 1365-1382
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26