Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Improving Probabilistic Quantitative Precipitation Forecasts Using Short Training Data through Artificial Neural Networks

Filetype[PDF-5.09 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Conventional statistical postprocessing techniques offer limited ability to improve the skills of probabilistic guidance for heavy precipitation. This paper introduces two artificial neural network (ANN)-based, geographically aware, and computationally efficient postprocessing schemes, namely, the ANN-multiclass (ANN-Mclass) and the ANN–censored, shifted gamma distribution (ANN-CSGD). Both schemes are implemented to postprocess Global Ensemble Forecast System (GEFS) forecasts to produce probabilistic quantitative precipitation forecasts (PQPFs) over the contiguous United States (CONUS) using a short (60 days), rolling training window. The performances of these schemes are assessed through a set of hindcast experiments, wherein postprocessed 24-h PQPFs from the two ANN schemes were compared against those produced using the benchmark quantile mapping algorithm for lead times ranging from 1 to 8 days. Outcomes of the hindcast experiments show that ANN schemes overall outperform the benchmark as well as the raw forecast over the CONUS in predicting probability of precipitation over a range of thresholds. The relative performance varies among geographic regions, with the two ANN schemes broadly improving upon quantile mapping over the central, south, and southeast, and slightly underperforming along the Pacific coast where skills of raw forecasts are the highest. Between the two schemes, the hybrid ANN-CSGD outperforms at higher rainfall thresholds (i.e., >50 mm day−1), though the outperformance comes at a slight expense of sharpness and spatial specificity. Collectively, these results confirm the ability of the ANN algorithms to produce skillful PQPFs with a limited training window and point to the prowess of the hybrid scheme for calibrating PQPFs for rare-to-extreme rainfall events.
  • Keywords:
  • Source:
    Journal of Hydrometeorology, 23(9), 1365-1382
  • DOI:
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1