U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Tornado Formation and Intensity Prediction Using Polarimetric Radar Estimates of Updraft Area



Details

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) algorithm is used to estimate the area of the enhanced differential radar reflectivity factor (ZDR) column in Weather Surveillance Radar – 1988 Doppler data; the ZDR column area is used as a proxy for the area of the midlevel updraft. The areas of ZDR columns are compared for 154 tornadic supercells and 44 non-tornadic supercells, including 30+ supercells with tornadoes rated EF1, EF2, and EF3; nine supercells with EF4+ tornadoes also are analyzed. It is found that (i) at the time of their peak 0-1 km azimuthal shear, non-tornadic supercells have consistently small (< 20 km2) ZDR column areas while tornadic cases exhibit much greater variability in areas, and (ii) at the time of tornadogenesis, EF3+ tornadic cases have larger ZDR column areas than tornadic cases rated EF1/2. In addition, all nine violent tornadoes sampled have ZDR column areas > 30 km2 at the time of tornadogenesis. However, only weak positive correlation is found between ZDR column area and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work focused on mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS algorithm, which is immune to ZDR bias and thus ideal for real-time operational use, is emphasized.
  • Keywords:
  • Source:
    Weather and Forecasting (2021)
  • DOI:
  • ISSN:
    0882-8156 ; 1520-0434
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:514724cdb5a94d97f7c9f0476d96b1bc64052e135b4617ca44ff9cf0c4bda20d
  • Download URL:
  • File Type:
    Filetype[PDF - 4.18 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.