The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Evidence for Gap Flows in the Birch Creek Valley, Idaho
-
2016
-
-
Source: Journal of the Atmospheric Sciences, 73(12), 4873-4894
Details:
-
Journal Title:Journal of the Atmospheric Sciences
-
Personal Author:
-
NOAA Program & Office:
-
Description:A field study was conducted of flows in the Birch Creek Valley in eastern Idaho. There is a distinct topographic constriction in the Birch Creek Valley that creates two subbasins: an upper and lower valley. The data were classified into one of three groups based on synoptic influence (weak/absent, high wind speeds, and other evidence of synoptic influence). Gap flows commonly developed downwind of the constriction in association with the weak/absent group but also occurred in association with the two synoptic groups suggesting the potential for more diverse origins. In general, the frequency and strength of gap flows appeared to be linked to the development of the requisite thermal regime and minimization of any synoptically driven southerly winds that would suppress outflows. Gap flows were characterized by high wind speeds with jetlike vertical profiles along the axis of the lower valley. For all three groups the morning transition in the upper valley and western sidewall usually proceeded slightly ahead of the lower valley, consistent with the principles of the topographic amplification factor. The persistence of southerly winds in the lower valley past evening transition inhibited the development of gap flows, promoted strong nighttime inversions, and delayed the onset of morning transition relative to the upper valley. Nocturnal temperature inversions in the lower valley were largely eliminated with the onset of strong gap flows resulting in earlier morning transitions there. The form for a method of predicting gap flow wind speeds is proposed.
-
Keywords:
-
Source:Journal of the Atmospheric Sciences, 73(12), 4873-4894
-
DOI:
-
ISSN:0022-4928;1520-0469;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: