An Evaluation of Paired Regional/Convection-Allowing Forecast Vertical Thermodynamic Profiles in Warm-Season, Thunderstorm-Supporting Environments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

An Evaluation of Paired Regional/Convection-Allowing Forecast Vertical Thermodynamic Profiles in Warm-Season, Thunderstorm-Supporting Environments

Filetype[PDF-3.96 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study evaluates forecast vertical thermodynamic profiles and derived thermodynamic parameters from two regional/convection-allowing model pairs, the North American Mesoscale Forecast System and the North American Mesoscale Nest model pair and the Rapid Refresh and High Resolution Rapid Refresh model pair, in warm-season, thunderstorm-supporting environments. Differences in bias and mean absolute error between the regional and convection-allowing models in each of the two pairs, while often statistically significant, are practically small for the variables, parameters, and vertical levels considered, such that the smaller-scale variability resolved by convection-allowing models does not degrade their forecast skill. Model biases shared by the regional and convection-allowing models in each pair are documented, particularly the substantial cool and moist biases in the planetary boundary layer arising from the Mellor–Yamada–Janjić planetary boundary layer parameterization used by the North American Mesoscale model and the Nest version as well as the middle-tropospheric moist bias shared by the Rapid Refresh and High Resolution Rapid Refresh models. Bias and mean absolute errors typically have larger magnitudes in the evening, when buoyancy is a significant contributor to turbulent vertical mixing, than in the morning. Vertical thermodynamic profile biases extend over a deep vertical layer in the western United States given strong sensible heating of the underlying surface. The results suggest that convection-allowing models can fulfill the use cases typically and historically met by regional models in operations at forecast entities such as the Storm Prediction Center, a fruitful finding given the proposed elimination of regional models with the Next-Generation Global Prediction System initiative.
  • Keywords:
  • Source:
    Weather and Forecasting, 33(6), 1547-1566
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1