The Impact of El Niño–Southern Oscillation (ENSO) on Winter and Early Spring U.S. Tornado Outbreaks
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Impact of El Niño–Southern Oscillation (ENSO) on Winter and Early Spring U.S. Tornado Outbreaks

Filetype[PDF-6.89 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In recent years, the potential of seasonal outlooks for tornadoes has attracted the attention of researchers. Previous studies on this topic have focused mainly on the influence of global circulation patterns [e.g., El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation, or Pacific decadal oscillation] on spring tornadoes. However, these studies have yielded conflicting results of the roles of these climate drivers on tornado intensity and frequency. The present study seeks to establish linkages between ENSO and tornado outbreaks over the United States during winter and early spring. These linkages are established in two ways: 1) statistically, by relating raw counts of tornadoes in outbreaks (defined as six or more tornadoes in a 24-h period in the United States east of the Rocky Mountains), and their destructive potential, to sea surface temperature anomalies observed in the Niño-3.4 region, and 2) qualitatively, by relating ENSO to shifts in synoptic-scale atmospheric phenomena that contribute to tornado outbreaks. The latter approach is critical for interpreting the statistical relationships, thereby avoiding the deficiencies in a few of the previous studies that did not provide physical explanations relating ENSO to shifts in tornado activity. The results suggest that shifts in tornado occurrence are clearly related to ENSO. In particular, La Niña conditions consistently foster more frequent and intense tornado activity in comparison with El Niño, particularly at higher latitudes. Furthermore, it is found that tornado activity changes are tied not only to the location and intensity of the subtropical jet during individual outbreaks but also to the positions of surface cyclones, low-level jet streams, and instability axes.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 56(9), 2455-2478
  • DOI:
  • ISSN:
    1558-8424;1558-8432;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1