Comparisons of QPFs Derived from Single- and Multicore Convection-Allowing Ensembles
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Comparisons of QPFs Derived from Single- and Multicore Convection-Allowing Ensembles

Filetype[PDF-1.59 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study compares ensemble precipitation forecasts from 10-member, 3-km grid-spacing, CONUS domain single- and multicore ensembles that were a part of the 2016 Community Leveraged Unified Ensemble (CLUE) that was run for the 2016 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. The main results are that a 10-member ARW ensemble was significantly more skillful than a 10-member NMMB ensemble, and a 10-member MIX ensemble (5 ARW and 5 NMMB members) performed about the same as the 10-member ARW ensemble. Skill was measured by area under the relative operating characteristic curve (AUC) and fractions skill score (FSS). Rank histograms in the ARW ensemble were flatter than the NMMB ensemble indicating that the envelope of ensemble members better encompassed observations (i.e., better reliability) in the ARW. Rank histograms in the MIX ensemble were similar to the ARW ensemble. In the context of NOAA’s plans for a Unified Forecast System featuring a CAM ensemble with a single core, the results are positive and indicate that it should be possible to develop a single-core system that performs as well as or better than the current operational CAM ensemble, which is known as the High-Resolution Ensemble Forecast System (HREF). However, as new modeling applications are developed and incremental changes that move HREF toward a single-core system are made possible, more thorough testing and evaluation should be conducted.
  • Keywords:
  • Source:
    Weather and Forecasting, 34(6), 1955-1964
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1