Two Extratropical Pathways to Forcing Tropical Convective Disturbances
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Two Extratropical Pathways to Forcing Tropical Convective Disturbances

Filetype[PDF-4.46 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Description:
    Observational evidence of two extratropical pathways to forcing tropical convective disturbances is documented through a statistical analysis of satellite-derived OLR and ERA5 reanalysis. The forcing mechanism and the resulting disturbances are found to strongly depend on the structure of the background zonal wind. Although Rossby wave propagation is prohibited in easterlies, modeling studies have shown that extratropical forcing can still excite equatorial waves through resonance between the tropics and extratropics. Here this “remote” forcing pathway is investigated for the first time in the context of convectively coupled Kelvin waves over the tropical Pacific during northern summer. The extratropical forcing is manifested by eddy momentum flux convergence that arises when extratropical eddies propagate into the subtropics and encounter their critical line. This nonlinear forcing has similar wavenumbers and frequencies with Kelvin waves and excites them by projecting onto their meridional eigenstructure in zonal wind, as a form of resonance. This resonance is also evidenced by a momentum budget analysis, which reveals the nonlinear forcing term is essential for maintenance of the waves, while the remaining linear terms are essential for propagation. In contrast, the “local” pathway of extratropical forcing entails the presence of a westerly duct during northern winter that permits Rossby waves to propagate into the equatorial east Pacific, while precluding any sort of resonance with Kelvin waves due to Doppler shifting effects. The intruding disturbances primarily excite tropical “cloud plumes” through quasigeostrophic forcing, while maintaining their extratropical nature. This study demonstrates the multiple roles of the extratropics in forcing in tropical circulations and illuminates how tropical–extratropical interactions and extratropical basic states can provide be a source of predictability at the S2S time scale. Significance Statement This study seeks to understand how circulations in the midlatitudes excite the weather systems in the tropics. Results show that the mechanisms, as well as the types of tropical weather systems excited, are strongly dependent on the mean large-scale wind structure. In particular, when the large-scale wind blows from east to west, a special type of eastward-moving tropical weather system, the Kelvin wave, is excited owing to its resonance with remote eastward-moving weather systems in the extratropics. On the contrary, when the average wind blows from west to east, midlatitude systems are observed to intrude into the lower latitudes and directly force tropical convection, the cloud plumes, while maintaining their extratropical nature. These results speak to how the midlatitudes can excite distinct types of tropical weather systems under different climatological wind regimes. Understanding these tropical weather systems and their interactions with the midlatitudes may ultimately help to improve predictions of weather beyond 2 weeks.
  • Source:
    Journal of Climate, 35(20), 2987-3009
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26