Direct Radiative Effects of Aerosols on Numerical Weather Forecasts—A Comparison of Two Aerosol Datasets in the NCEP GFS
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Direct Radiative Effects of Aerosols on Numerical Weather Forecasts—A Comparison of Two Aerosol Datasets in the NCEP GFS

Filetype[PDF-6.91 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This study compares aerosol direct radiative effects on numerical weather forecasts made by the NCEP Global Forecast System (GFS) with two different aerosol datasets, the Optical Properties of Aerosols and Clouds (OPAC) and MERRA-2 aerosol climatologies. The underestimation of aerosol optical depth (AOD) by OPAC over northwest Africa, central to East Africa, the Arabian Peninsula, Southeast Asia, and the Indo-Gangetic Plain, and overestimation in the storm-track regions in both hemispheres are reduced by MERRA-2. Surface downward shortwave (SW) and longwave (LW) fluxes and the top-of-the-atmosphere SW and outgoing LW fluxes from model forecasts are compared with CERES satellite observations. Forecasts made with OPAC aerosols have large radiative flux biases, especially in northwest Africa and the storm-track regions. These biases are also reduced in the forecasts made with MERRA-2 aerosols. The improvements from MERRA-2 are most noticeable in the surface downward SW fluxes. GFS medium-range weather forecasts made with the MERRA-2 aerosols demonstrated slightly improved forecast accuracy of sea level pressure and precipitation over the Indian and East Asian summer monsoon region. A stronger Africa easterly jet is produced, associated with a low pressure over the east Atlantic Ocean and west of northwest Africa. Impacts on large-scale skill scores such as 500-hPa geopotential height anomaly correlation are generally positive in the Northern Hemisphere and the Pacific and North American regions in both the winter and summer seasons.
  • Keywords:
  • Source:
    Weather and Forecasting, 38(5), 753-772
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2