Assessment of Alaska Rain-on-Snow Events Using Dynamical Downscaling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields



Document Data
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page


Assessment of Alaska Rain-on-Snow Events Using Dynamical Downscaling

Filetype[PDF-4.52 MB]


  • Journal Title:
    Journal of Applied Meteorology and Climatology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The ice formed by cold-season rainfall or rain on snow (ROS) has striking impacts on the economy and ecology of Alaska. An understanding of the atmospheric drivers of ROS events is required to better predict them and plan for environmental change. The spatially/temporally sparse network of stations in Alaska makes studying such events challenging, and gridded reanalysis or remote sensing products are necessary to fill the gaps. Recently developed dynamically downscaled climate data provide a new suite of high-resolution variables for investigating historical and projected ROS events across all of Alaska from 1979 to 2100. The dynamically downscaled reanalysis data of ERA-Interim replicated the seasonal patterns of ROS events but tended to produce more rain events than in station observations. However, dynamical downscaling reduced the bias toward more rain events in the coarse reanalysis. ROS occurred most frequently over southwestern and southern coastal regions. Extreme events with the heaviest rainfall generally coincided with anomalous high pressure centered to the south/southeast of the locations receiving the event and warm-air advection from the resulting southwesterly wind flow. ROS events were projected to increase in frequency overall and for extremes across most of the region but were expected to decline over southwestern/southern Alaska. Increases in frequency were projected as a result of more frequent winter rainfall, but the number of ROS events may ultimately decline in some areas as a result of temperatures rising above the freezing threshold. These projected changes in ROS can significantly affect wildlife, vegetation, and human activities across the Alaska landscape.
  • Keywords:
  • Source:
    Journal of Applied Meteorology and Climatology, 57(8), 1847-1863
  • DOI:
  • ISSN:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.26.1