Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: an analysis of lidar measurements and model results
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Cluster-based characterization of multi-dimensional tropospheric ozone variability in coastal regions: an analysis of lidar measurements and model results

Filetype[PDF-6.95 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Coastal regions are susceptible to multiple complex dynamic and chemical mechanisms and emission sources that lead to frequently observed large tropospheric ozone variations. These large ozone variations occur on a mesoscale and have proven to be arduous to simulate using chemical transport models (CTMs). We present a clustering analysis of multi-dimensional measurements from ozone lidar in conjunction with both an offline GEOS-Chem chemical-transport model (CTM) simulation and the online GEOS-Chem simulation GEOS-CF, to investigate the vertical and temporal variability of coastal ozone during three recent air quality campaigns: 2017 Ozone Water-Land Environmental Transition Study (OWLETS)-1, 2018 OWLETS-2, and 2018 Long Island Sound Tropospheric Ozone Study (LISTOS). We developed and tested a clustering method that resulted in five ozone profile curtain clusters. The established five clusters all varied significantly in ozone magnitude vertically and temporally, which allowed us to characterize the coastal ozone behavior. The lidar clusters provided a simplified way to evaluate the two CTMs for their performance of diverse coastal ozone cases. An overall evaluation of the models reveals good agreement (R≈0.70) in the low-level altitude range (0 to 2000 m), with a low and unsystematic bias for GEOS-Chem and a high systemic positive bias for GEOS-CF. The mid-level (2000–4000 m) performances show a high systematic negative bias for GEOS-Chem and an overall low unsystematic bias for GEOS-CF and a generally weak agreement to the lidar observations (R=0.12 and 0.22, respectively). Evaluating cluster-by-cluster model performance reveals additional model insight that is overlooked in the overall model performance. Utilizing the full vertical and diurnal ozone distribution information specific to lidar measurements, this work provides new insights on model proficiency in complex coastal regions.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 22(23), 15313-15331
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1