The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Surface warming and wetting due to methane’s long-wave radiative effects muted by short-wave absorption
-
2023
-
-
Source: Nature Geoscience, 16(4), 314-320
Details:
-
Journal Title:Nature Geoscience
-
Personal Author:
-
NOAA Program & Office:
-
Description:Although greenhouse gases absorb primarily long-wave radiation, they also absorb short-wave radiation. Recent studies have highlighted the importance of methane short-wave absorption, which enhances its stratospherically adjusted radiative forcing by up to ~ 15%. The corresponding climate impacts, however, have been only indirectly evaluated and thus remain largely unquantified. Here we present a systematic, unambiguous analysis using one model and separate simulations with and without methane short-wave absorption. We find that methane short-wave absorption counteracts ~30% of the surface warming associated with its long-wave radiative effects. An even larger impact occurs for precipitation as methane short-wave absorption offsets ~60% of the precipitation increase relative to its long-wave radiative effects. The methane short-wave-induced cooling is due largely to cloud rapid adjustments, including increased low-level clouds, which enhance the reflection of incoming short-wave radiation, and decreased high-level clouds, which enhance outgoing long-wave radiation. The cloud responses, in turn, are related to the profile of atmospheric solar heating and corresponding changes in temperature and relative humidity. Despite our findings, methane remains a potent contributor to global warming, and efforts to reduce methane emissions are vital for keeping global warming well below 2 °C above preindustrial values.
-
Keywords:
-
Source:Nature Geoscience, 16(4), 314-320
-
DOI:
-
ISSN:1752-0894;1752-0908;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: