The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Implementation and Evaluation of a Unified Turbulence Parameterization Throughout the Canopy and Roughness Sublayer in Noah‐MP Snow Simulations
-
2021
-
-
Source: Journal of Advances in Modeling Earth Systems, 13(11)
Details:
-
Journal Title:Journal of Advances in Modeling Earth Systems
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Noah-MP land surface model (LSM) relies on the Monin-Obukhov (M-O) Similarity Theory (MOST) to calculate land-atmosphere exchanges of water, energy, and momentum fluxes. However, MOST flux-profile relationships neglect canopy-induced turbulence in the roughness sublayer (RSL) and parameterize within-canopy turbulence in an ad hoc manner. We implement a new physics scheme (M-O-RSL) into Noah-MP that explicitly parameterizes turbulence in RSL. We compare Noah- MP simulations employing the M-O-RSL scheme (M-O-RSL simulations) and the default M-O scheme (M-O simulations) against observations obtained from 647 Snow Telemetry (SNOTEL) stations and
-
Keywords:
-
Source:Journal of Advances in Modeling Earth Systems, 13(11)
-
DOI:
-
ISSN:1942-2466;1942-2466;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
License:
-
Rights Information:CC BY-NC-ND
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: