Monitoring spatial and temporal soundscape features within ecologically significant U.S. National Marine Sanctuaries
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Monitoring spatial and temporal soundscape features within ecologically significant U.S. National Marine Sanctuaries

Filetype[PDF-4.54 MB]



Details:

  • Journal Title:
    Ecological Applications
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The U.S. National Oceanic and Atmospheric Administration’s Office of National Marine Sanctuaries manages a system of marine protected areas encompassing more than 2,000,000 km2. U.S. National Marine Sanctuaries (NMS) have been designated to provide protection for their conservation, recreational, ecological, historical, scientific, cultural, archaeological, educational, or aesthetic qualities. Due to the large variability of attributes among NMS, designing coordinated system-wide monitoring to support diverse resource protection goals can be challenging. Underwater sound monitoring is seeing increasing application to marine protected area management because it is able to support this wide variety of information needs. Passive acoustics are providing invaluable autonomous information regarding habitat associations, identifying species spatial and temporal use, and highlighting patterns in conditions that are otherwise difficult to survey. Using standardized equipment and analysis methods this study collected ambient underwater sound data and derived measurements to investigate temporal changes in sound pressure levels and power spectral density, identify presence of select species of importance and support within and among site comparison of ambient underwater sound among eight sites within four U.S. NMS. Broadband sound pressure levels of ambient sound (10–24,000 Hz) varied as much as 24 dB re 1 µPa (max difference 100–124 dB re 1 µPa) among the recording sites, sanctuaries, and seasons. Biotic signals, such as snapping shrimp snaps and vocalizations of fishes, exhibited distinct diel and seasonal patterns and showed variation among sites. Presence of anthropogenic signals, such as vessel passage, also varied substantially among sites, ranging from on average 1.6–21.8 h/d. The study identified measurements that effectively summarized baseline soundscape attributes and prioritized future opportunities for integrating non-acoustic and acoustic variables in order to inform area-specific management questions within four ecologically varying U.S. National Marine Sanctuaries.
  • Content Notes:
    Financial support was provided by National Oceanic and Atmospheric Administration’s Office of National Marine Sanctuaries and National Marine Fisheries Service’s Ocean Acoustics Program.

    All acoustic data collected for this study is permanently stored at National Oceanic and Atmospheric Administration National Centers for Environmental Information Archive. This can be viewed and requested via the Passive Acoustic Data Map Viewer

  • Keywords:
  • Source:
    Ecological Applications 31(8):e02439
  • DOI:
  • Format:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1