Insights into the significant increase in ozone during COVID-19 in a typical urban city of China
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Insights into the significant increase in ozone during COVID-19 in a typical urban city of China

Filetype[PDF-6.89 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The outbreak of COVID-19 promoted strict restrictions to human activities in China, which led to a dramatic decrease in most air pollutant concentrations (e.g., PM2.5, PM10, NOx, SO2 and CO). However, an obvious increase in ozone (O3) concentrations was found during the lockdown period in most urban areas of China. In this study, we conducted field measurements targeting ozone and its key precursors by utilizing a novel proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) in Changzhou, which is representative of the Yangtze River Delta (YRD) city cluster of China. We further applied the integrated methodology including machine learning, an observation-based model (OBM) and sensitivity analysis to obtain insights into the reasons causing the obvious increase in ozone. Major findings include the following: (1) by deweathered calculation, we found changes in precursor emissions contributed 1.46 ppbv to the increase in the observed O3 during the full-lockdown period in 2020, while meteorology constrained 3.0 ppbv of O3 in the full-lockdown period of 2019. (2) By using an OBM, we found that although a significant reduction in O3 precursors was observed during the full-lockdown period, the photochemical formation of O3 was stronger than that during the pre-lockdown period. (3) The NOx/VOC ratio dropped dramatically from 1.84 during the pre-lockdown to 0.79 in the full-lockdown period, which switched O3 formation from a VOC-limited regime to the boundary of a NOx- and VOC-limited regime. Additionally, box model results suggested that the decrease in the NOx/VOC ratio during the full-lockdown period could increase the mean O3 by 2.4 ppbv. Results of this study give insights into the relationship between O3 and its precursors in urban area and demonstrate reasons for the obvious increase in O3 in most urban areas of China during the COVID-19 lockdown period. This study also underlines the necessity of controlling anthropogenic oxygenated volatile organic compounds (OVOCs), alkenes and aromatics in the sustained campaign of reducing O3 pollution in China.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 22(7), 4853-4866
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1