Democratizing macroecology: Integrating unoccupied aerial systems with the National Ecological Observatory Network
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Democratizing macroecology: Integrating unoccupied aerial systems with the National Ecological Observatory Network

Filetype[PDF-2.60 MB]



Details:

  • Journal Title:
    Ecosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Macroecology research seeks to understand ecological phenomena with causes and consequences that accumulate, interact, and emerge across scales spanning several orders of magnitude. Broad-extent, fine-grain information (i.e., high spatial resolution data over large areas) is needed to adequately capture these cross-scale phenomena, but these data have historically been costly to acquire and process. Unoccupied aerial systems (UAS or drones carrying a sensor payload) and the National Ecological Observatory Network (NEON) make the broad-extent, fine-grain observational domain more accessible to researchers by lowering costs and reducing the need for highly specialized equipment. Integration of these tools can further democratize macroecological research, as their strengths and weaknesses are complementary. However, using these tools for macroecology can be challenging because mental models are lacking, thus requiring large up-front investments in time, energy, and creativity to become proficient. This challenge inspired a working group of UAS-using academic ecologists, NEON professionals, imaging scientists, remote sensing specialists, and aeronautical engineers at the 2019 NEON Science Summit in Boulder, Colorado, to synthesize current knowledge on how to use UAS with NEON in a mental model for an intended audience of ecologists new to these tools. Specifically, we provide (1) a collection of core principles for collecting high-quality UAS data for NEON integration and (2) a case study illustrating a sample workflow for processing UAS data into meaningful ecological information and integrating it with NEON data collected on the ground—with the Terrestrial Observation System—and remotely—from the Airborne Observation Platform. With this mental model, we advance the democratization of macroecology by making a key observational domain—the broad-extent, fine-grain domain—more accessible via NEON/UAS integration.
  • Keywords:
  • Source:
    Ecosphere, 13(8)
  • DOI:
  • ISSN:
    2150-8925;2150-8925;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.27.2