Low variability runoff inhibits coupling of climate, tectonics, and topography in the Greater Caucasus
-
2022
-
Details
-
Journal Title:Earth and Planetary Science Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:Hypothesized feedbacks between climate and tectonics are mediated by the relationship between topography and long-term erosion rates. While many studies show monotonic relationships between channel steepness and erosion rates, the degree of nonlinearity in this relationship varies by landscape. Mechanistically explaining controls on this relationship in natural settings is critical because highly nonlinear relationships imply low sensitivity between climate and tectonics. To this end, we present a coordinated analysis of cosmogenic 10Be concentrations in river sands paired with topographic, hydroclimatic, and tectonic data for the Greater Caucasus Mountains where topography is invariant along-strike despite large gradients in modern precipitation and convergence rates. We show that spatial patterns in erosion rates largely reflect regional tectonics with little sensitivity to mean precipitation or runoff. The nonlinearity in the erosion rate – steepness relationship may arise from very low runoff variability, which we attribute to the large contribution from snowmelt. Transitioning from rainfall- to snowmelt-driven runoff as mean elevation increases is common to many mid-latitude mountain ranges. The associated decrease in runoff variability may represent important, unrecognized dynamics inhibiting the sensitivity of tectonics to climate more broadly.
-
Keywords:Earth And Planetary Sciences (miscellaneous) Geochemistry And Petrology Geophysics Space And Planetary Science Earth And Planetary Sciences (miscellaneous) Geochemistry And Petrology Space And Planetary Science Earth And Planetary Sciences (miscellaneous) Geochemistry And Petrology Space And Planetary Science
-
Source:Earth and Planetary Science Letters, 584, 117525
-
DOI:
-
ISSN:0012-821X
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:urn:sha256:830717a4580099f61a04481eddfb2227cb54d254fdc66c4bfb67c98bb86db742
-
Download URL:
-
File Type:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
COLLECTION
NOAA Cooperative Institutes