Characterization of large tsunamigenic landslides and their effects using digital surface models: A case study from Taan Fiord, Alaska
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Characterization of large tsunamigenic landslides and their effects using digital surface models: A case study from Taan Fiord, Alaska

Filetype[PDF-7.51 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing of Environment
  • Description:
    On 17 October 2015, a large landslide entered the marine waters of Taan Fiord, Alaska, and generated a displacement wave with a 193 m runup. The wave scoured the surrounding hillslopes of soil and vegetation and deposited significant volumes of material into the fjord, onto hillslopes on the opposite side of the fjord, and on top of Tyndall Glacier. For this study, we generated six, 2-m posting Digital Surface Models (DSMs) using DigitalGlobe/Maxar satellite imagery acquired near-annually between 2012 and 2019, and the Surface Extraction with TIN-based Search-space Minimization (SETSM) high-performance computing algorithm. We aligned the DSMs to exposed bedrock in the 01 March 2014 DSM acquisition, and then used them to characterize topographic and volumetric changes from before and after the 2015 Taan Fiord rock avalanche. We find that the landslide mobilized roughly 77. 0 ± 0.9 Mm3 of material, of which approximately 56.3 Mm3 were deposited in the fjord waters. Furthermore, we quantified an additional 27.2 ± 3.8 Mm3 of material scoured from fjord-adjacent hillslopes and deposited in the fjord waters, providing new constraints on the subaqueous deposition. This is the first time that DSMs have been used to estimate the volume of scour caused by a tsunami and the subsequent changes in extent and volume with time. Our results for the landslide and runout are consistent with field measurements published previously. This study offers improved estimates of both subaerial and subaqueous deposition for the 2015 Taan Fiord landslide and describes additional regional environmental conditions. We identify precursory motion prior to the 2015 landslide, characterize several smaller-scale landslides in the larger Taan Fiord region, delineate terminus positions and associated ice dynamics of the Tyndall Glacier, and detail seasonal changes in vegetation growth and snow melt/accumulation. This work provides important new insights into the geomorphic features and dynamics of this landslide and subsequent tsunami. The interdisciplinary applications associated with DSMs and the accuracy of the measurements presented here demonstrate that these methods are an effective tool to improve our understanding of the pre- and post-landslide processes, for monitoring areas at risk for landslides and other natural hazards, and for rapid response to catastrophic events.
  • Source:
    Remote Sensing of Environment, 270, 112881
  • ISSN:
    0034-4257
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.25