Wind Fetch and Direction Effects on Langmuir Turbulence in a Coastal Ocean
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Wind Fetch and Direction Effects on Langmuir Turbulence in a Coastal Ocean

Filetype[PDF-2.64 MB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Description:
    Mixing processes in the upper ocean play a key role in transferring heat, momentum, and matter in the ocean. These mixing processes are significantly enhanced by wave-driven Langmuir turbulence (LT). Based on a paired analysis of observations and simulations, this study investigates wind fetch and direction effects on LT at a coastal site south of the island Martha’s Vineyard (MA, USA). Our results demonstrate that LT is strongly influenced by wind fetch and direction in coastal oceans, both of which contribute to controlling turbulent coastal transport processes. For northerly offshore winds, land limits the wind fetch and wave development, whereas southerly winds are associated with practically infinite fetch. Observed and simulated two-dimensional wave height spectra reveal persistent southerly swell and substantially more developed wind-driven waves from the south. For oblique offshore winds, waves develop more strongly in the alongshore direction with less limited fetch, resulting in significant wind and wave misalignments. Observations of coherent near-surface crosswind velocities indicate that LT is only present for sufficiently developed waves. The fetch-limited northerly winds inhibit wave developments and the formation of LT. In addition to limited fetch, strong wind–wave misalignments prevent LT development. Although energetic and persistent, swell waves do not substantially influence LT activity during the observation period because these relatively long swell waves are associated with small Stokes drift shear. These observational results agree well with turbulence-resolving large eddy simulations (LESs) based on the wave-averaged Navier–Stokes equation, validating the LES approach to coastal LT in the complex wind and wave conditions.
  • Source:
    Journal of Geophysical Research: Oceans, 127, e2021JC018222
  • Format:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26