Dense Point Cloud Quality Factor as Proxy for Accuracy Assessment of Image-Based 3D Reconstruction
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Dense Point Cloud Quality Factor as Proxy for Accuracy Assessment of Image-Based 3D Reconstruction

Filetype[PDF-3.35 MB]



Details:

  • Journal Title:
    Journal of Surveying Engineering
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Photogrammetry using structure from motion (SfM) and multiview stereopsis (MVS) techniques can recover three-dimensional (3D) structure from a set of overlapping, unoriented, and uncalibrated images captured by nonmetric digital cameras. It is possible to generate accurate reconstructions of sparse points using mathematically robust bundle adjustment procedures together with accurate surveying control data. However, MVS, which recovers the dense geometry by matching and expanding between sparse points, is prone to additional error. Miscellaneous constituents such as sensor specifications, data collection, and site conditions can introduce random noise or artifacts that locally degrade the accuracy of the dense point cloud. This paper proposes seven indexes, named dense point cloud quality factors (DPQFs), as proxy indicators of image-based dense reconstruction accuracy. DPQFs include proximity to keypoint features, distance to GCPs, angle of incidence, camera stand-off distances, number of overlapping images, brightness index, and darkness index. The correlation between the DPQFs and the 3D error was investigated in simulated and empirical experiments scenarios with varying factors. The results of this study showed that the DPQFs provide proxy indications for accuracy when the error estimation for the dense point clouds is more challenging than error propagation computations in bundle adjustment (BA). The DPQFs can be defined solely using the SfM-MVS data, without prior knowledge about the error. Inclusion of the factors as additional fields of information and their visualization provide tangible intuitions regarding the factors that influence the accuracy of image-based 3D reconstruction.
  • Keywords:
  • Source:
    Journal of Surveying Engineering, 147(1)
  • DOI:
  • ISSN:
    0733-9453;1943-5428;
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Rights Statement:
    The NOAA IR provides access to this content under the authority of the government's retained license to distribute publications and data resulting from federal funding. While users may legally access this content, the copyright owners retain rights that govern the reproduction, redistribution, and re-use of this work. The user is solely responsible for complying with applicable copyright law.
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1