The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Marine Macroalgae Are An Overlooked Sink Of Silicon In Coastal Systems
-
2022
-
-
Source: New Phytologist, 233(6), 2330-2336
Details:
-
Journal Title:New Phytologist
-
Personal Author:
-
NOAA Program & Office:
-
Sea Grant Program:
-
Description:Across the marine landscape, from estuaries to the open ocean, biota take up silicon (Si) as monosilicic acid and deposit it into their tissues as biogenic silica (BSi). Along the coast, vegetated ecosystems, such as salt marshes and mangroves, sequester a significant amount of Si in their tissues and likely help regulate the availability of Si in surrounding waters (Carey & Fulweiler, 2014; Elizondo et al., 2021). Si is also accumulated by sponges, euglyphid amoebae, radiolarians, silicoflagellates, and choanoflagellates, as well as a few coccolithophores, Prasinophyceae, and picocyanobacteria (Raven & Giordano, 2009; Gadd & Raven, 2010; Baines et al., 2012). The dominant driver of coastal (and open ocean) Si cycling, however, is generally thought to be diatoms. These siliceous phytoplankton require Si on a 1 : 1 molar ratio with nitrogen (N). Diatoms are responsible for 40–50% of global marine primary production (Field et al., 1998; Rousseaux & Gregg, 2013) and form the base of the marine food web in many parts of the ocean, especially coastal temperate regions (Irigoien et al., 2002).
-
Keywords:
-
Source:New Phytologist, 233(6), 2330-2336
-
DOI:
-
ISSN:0028-646X;1469-8137;
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Accepted Manuscript
-
Compliance:Submitted
-
Main Document Checksum:
-
Download URL:
-
File Type: