The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Going with the floe: tracking CESM Large Ensemble sea ice in the Arctic provides context for ship-based observations
-
2020
-
-
Source: The Cryosphere, 14(4), 1259-1271
Details:
-
Journal Title:The Cryosphere
-
Personal Author:
-
NOAA Program & Office:
-
Description:In recent decades, Arctic sea ice has shifted toward a younger, thinner, seasonal ice regime. Studying and understanding this “new” Arctic will be the focus of a year-long ship campaign beginning in autumn 2019. Lagrangian tracking of sea ice floes in the Community Earth System Model Large Ensemble (CESM-LE) during representative “perennial” and “seasonal” time periods allows for understanding of the conditions that a floe could experience throughout the calendar year. These model tracks, put into context a single year of observations, provide guidance on how observations can optimally shape model development, and how climate models could be used in future campaign planning. The modeled floe tracks show a range of possible trajectories, though a Transpolar Drift trajectory is most likely. There is also a small but emerging possibility of high-risk tracks, including possible melt of the floe before the end of a calendar year. We find that a Lagrangian approach is essential in order to correctly compare the seasonal cycle of sea ice conditions between point-based observations and a model. Because of high variability in the melt season sea ice conditions, we recommend in situ sampling over a large range of ice conditions for a more complete understanding of how ice type and surface conditions affect the observed processes. We find that sea ice predictability emerges rapidly during the autumn freeze-up and anticipate that process-based observations during this period may help elucidate the processes leading to this change in predictability.
-
Keywords:
-
Source:The Cryosphere, 14(4), 1259-1271
-
DOI:
-
Document Type:
-
Place as Subject:
-
License:
-
Rights Information:CC BY
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: