U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

Supporting Files


Details

  • Journal Title:
    Hydrology and Earth System Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks – Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basins on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. The evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.
  • Keywords:
  • Source:
    Hydrology and Earth System Sciences, 21(1), 169-181
  • DOI:
  • Document Type:
  • Funding:
  • Place as Subject:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha256:7c500561eb884b08770e1ea06143820051201712b44258248cd4893621bd5c47
  • Download URL:
  • File Type:
    Filetype[PDF - 4.69 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.