OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

OMI NO2 column densities over North American urban cities: the effect of satellite footprint resolution

Filetype[PDF-11.02 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Geoscientific Model Development
  • Description:
    Nitrogen dioxide vertical column density (NO2 VCD) measurements via satellite are compared with a fine-scale regional chemistry transport model, using a new approach that considers varying satellite footprint sizes. Space-borne NO2 VCD measurement has been used as a proxy for surface nitrogen oxide (NOx) emission, especially for anthropogenic urban emission, so accurate comparison of satellite and modeled NO2 VCD is important in determining the future direction of NOx emission policy. The NASA Ozone Monitoring Instrument (OMI) NO2 VCD measurements, retrieved by the Royal Netherlands Meteorological Institute (KNMI), are compared with a 12 km Community Multi-scale Air Quality (CMAQ) simulation from the National Oceanic and Atmospheric Administration. We found that the OMI footprint-pixel sizes are too coarse to resolve urban NO2 plumes, resulting in a possible underestimation in the urban core and overestimation outside. In order to quantify this effect of resolution geometry, we have made two estimates. First, we constructed pseudo-OMI data using fine-scale outputs of the model simulation. Assuming the fine-scale model output is a true measurement, we then collected real OMI footprint coverages and performed conservative spatial regridding to generate a set of fake OMI pixels out of fine-scale model outputs. When compared to the original data, the pseudo-OMI data clearly showed smoothed signals over urban locations, resulting in roughly 20–30 % underestimation over major cities. Second, we further conducted conservative downscaling of OMI NO2 VCDs using spatial information from the fine-scale model to adjust the spatial distribution, and also applied averaging kernel (AK) information to adjust the vertical structure. Four-way comparisons were conducted between OMI with and without downscaling and CMAQ with and without AK information. Results show that OMI and CMAQ NO2 VCDs show the best agreement when both downscaling and AK methods are applied, with the correlation coefficient R = 0.89. This study suggests that satellite footprint sizes might have a considerable effect on the measurement of fine-scale urban NO2 plumes. The impact of satellite footprint resolution should be considered when using satellite observations in emission policy making, and the new downscaling approach can provide a reference uncertainty for the use of satellite NO2 measurements over most cities.
  • Source:
    Geoscientific Model Development, 9(3), 1111-1123
  • Document Type:
  • Place as Subject:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26