organic compounds based on collision cross section and mass-to-charge ratio
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

organic compounds based on collision cross section and mass-to-charge ratio

Filetype[PDF-3.18 MB]



Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A new metric is introduced for representing the molecular signature of atmospherically relevant organic compounds, the collision cross section (Ω), a quantity that is related to the structure and geometry of molecules and is derived from ion mobility measurements. By combination with the mass-to-charge ratio (m∕z), a two-dimensional Ω − m∕z space is developed to facilitate the comprehensive investigation of the complex organic mixtures. A unique distribution pattern of chemical classes, characterized by functional groups including amine, alcohol, carbonyl, carboxylic acid, ester, and organic sulfate, is developed on the 2-D Ω − m∕z space. Species of the same chemical class, despite variations in the molecular structures, tend to situate as a narrow band on the space and follow a trend line. Reactions involving changes in functionalization and fragmentation can be represented by the directionalities along or across these trend lines, thus allowing for the interpretation of atmospheric transformation mechanisms of organic species. The characteristics of trend lines for a variety of functionalities that are commonly present in the atmosphere can be predicted by the core model simulations, which provide a useful tool to identify the chemical class to which an unknown species belongs on the Ω − m∕z space. Within the band produced by each chemical class on the space, molecular structural assignment can be achieved by utilizing collision-induced dissociation as well as by comparing the measured collision cross sections in the context of those obtained via molecular dynamics simulations.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 16(20), 12945-12959
  • DOI:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.27.2