Variational Data Assimilation of Tides
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Variational Data Assimilation of Tides

Filetype[PDF-6.59 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This paper presents an incremental variational method to assimilate the observed tidal harmonic constants using a frequency domain linearized shallow water equation. A cost function was constructed with tidal boundary conditions and tidal forcing as its control (independent) variables. To minimize the cost function, optimal boundary conditions and tidal forcing were derived using a conventional dual 4-Dimensional Variational (4D-Var) Physical-space Statistical Analysis System. The tangent linear and adjoint model were solved by using a finite element method. By adapting the incremental form, the variational method streamlines the workflow to provide the incremental correction to the boundary conditions and tidal forcing of a hydrodynamic forward model. The method was tested for semi-diurnal M-2 tides in a regional sea with a complex tidal system. The results demonstrate a 65-72% reduction of tidal harmonic constant vector error by assimilating the observed M-2 tidal harmonic constants. In addition to improving the tides of a hydrodynamic model by optimizing boundary conditions and tidal forcing, the method computes a spatially varying uncertainty of individual tidal constituents in the model. The method provides a versatile tool for mapping the spatially continuous tides and currents in coastal and estuarine waters by assimilating the harmonic constants of individual tidal constituents of observed tides and currents.
  • Keywords:
  • Source:
    Journal of Marine Science and Engineering, 8(1), 54
  • DOI:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1