Variational Data Assimilation of Tides
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Variational Data Assimilation of Tides

Filetype[PDF-6.59 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • Description:
    This paper presents an incremental variational method to assimilate the observed tidal harmonic constants using a frequency domain linearized shallow water equation. A cost function was constructed with tidal boundary conditions and tidal forcing as its control (independent) variables. To minimize the cost function, optimal boundary conditions and tidal forcing were derived using a conventional dual 4-Dimensional Variational (4D-Var) Physical-space Statistical Analysis System. The tangent linear and adjoint model were solved by using a finite element method. By adapting the incremental form, the variational method streamlines the workflow to provide the incremental correction to the boundary conditions and tidal forcing of a hydrodynamic forward model. The method was tested for semi-diurnal M-2 tides in a regional sea with a complex tidal system. The results demonstrate a 65-72% reduction of tidal harmonic constant vector error by assimilating the observed M-2 tidal harmonic constants. In addition to improving the tides of a hydrodynamic model by optimizing boundary conditions and tidal forcing, the method computes a spatially varying uncertainty of individual tidal constituents in the model. The method provides a versatile tool for mapping the spatially continuous tides and currents in coastal and estuarine waters by assimilating the harmonic constants of individual tidal constituents of observed tides and currents.
  • Source:
    Journal of Marine Science and Engineering, 8(1), 54
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26