Real-Time Chronological Hazard Impact Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Real-Time Chronological Hazard Impact Modeling

Filetype[PDF-5.22 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Marine Science and Engineering
  • NOAA Program & Office:
  • Description:
    The potential of using ADvanced CIRCulation model (ADCIRC) to assess the time incremented progression of hazard impacts on individual critical facilities has long been recognized but is not well described. As ADCIRC is applied to create granular impact models, the lack of transparency in the methods is problematic. It becomes difficult to evaluate the entire system in situations where modeling integrates different types of data (e.g., hydrodynamic and existing geospatial point data) and involves multiple disciplines and stakeholders. When considering increased interest in combining hydrodynamic models, existing geospatial information, and advanced visualizations it is necessary to increase transparency and identify the pitfalls that arise out of this integration (e.g., the inadequacy of data to support the resolution of proposed outputs). This paper thus describes an all numerical method to accomplish this integration. It provides an overview of the generation of the hydrodynamic model, describes the all numerical method utilized to model hazard impacts, identifies pitfalls that arise from the integration of existing geospatial data with the hydrodynamic model, and describes an approach to developing a credible basis for determining impacts at a granular scale. The paper concludes by reflecting on the implementation of these methods as part of a Federal Emergency Management Agency (FEMA) Integrated Emergency Management Training Course (IEMC) and identifies the need to further study the effects of integrated models and visualizations on risk perception.
  • Source:
    Journal of Marine Science and Engineering, 6(4), 134
  • Document Type:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26