Stable Isotope Analyses of Multiple Tissues of Great Shearwaters (Ardenna Gravis) Reveals Long-Term Dietary Stability, Short-Term Changes in Diet, and Can be Used as a Tool to Monitor Food Webs
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates
...

to

...
Document Data
Library
People
Clear All
...
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Stable Isotope Analyses of Multiple Tissues of Great Shearwaters (Ardenna Gravis) Reveals Long-Term Dietary Stability, Short-Term Changes in Diet, and Can be Used as a Tool to Monitor Food Webs

  • 2019

  • Source: Diversity, 11(9), 163



Details:

  • Journal Title:
    Diversity
  • NOAA Program & Office:
  • Description:
    The great shearwater (Ardenna gravis) is a common pelagic bird with a distribution that spans almost the entire Atlantic basin, which in conjunction with its relatively high abundance, makes great shearwaters an effective bio indicator. We compared delta C-13 and delta N-15 values from the feathers, red blood cells (RBCs), and plasma of great shearwaters collected in 2014 and 2015 from the waters off Massachusetts and Cape Cod. The delta C-13 and delta N-15 values of RBCs were quite constant between sampling periods and years, suggesting a generally stable food web over that time period. However, the delta C-13 of plasma indicates a small seasonal change in diet between July and September for both years, with plasma delta N-15 values suggesting a slight increase in trophic level late in summer. Comparison of the delta N-15 of RBCs and plasma indicates that great shearwaters experienced a diet shift during the first few weeks of summer 2014, but not in 2015. Comparisons with other studies suggest that these shearwaters feed at a lower trophic level than great shearwaters sampled in the Bay of Fundy and that there is a decrease in delta C-13 with increasing latitude, which could indicate a more pelagic diet in northern waters. Stable isotope analysis of the sixth primary feathers provided evidence that these feathers are molted in the Northern Hemisphere and that the diet of great shearwaters shortly after arrival was different in 2014 and 2015. This study demonstrates that within species comparisons of tissue isotopic signatures over time and comparisons of isotopic signatures of tissues with different turnover rates, can detect changes in diet and be used as a tool to monitor for changes in marine food webs over time and space. The relevant signals remain informative even in the absence of species-specific data on tissue-diet discrimination factors, tissue turnover rates, or knowledge of dietary components and their stable isotopic signatures, suggesting dietary changes indicative of a corresponding change in the food web.
  • Keywords:
  • Source:
    Diversity, 11(9), 163
  • DOI:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:
    Filetype[PDF-1.42 MB]

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1