The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Significance of Fast Radiative Transfer for Hyperspectral SWIR XCO2 Retrievals

Filetype[PDF-8.96 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Fast radiative transfer (RT) methods are commonplace in most algorithms which retrieve the column-averaged dry-mole fraction of carbon dioxide (XCO2) in the Earth's atmosphere. These methods are required to keep the computational effort at a manageable level and to allow for operational processing of tens of thousands of measurements per day. Without utilizing any fast RT method, the involved computation times would be one to two orders of magnitude larger. In this study, we investigate three established methods within the same retrieval algorithm, and for the first time, analyze the impact of the fast RT method while keeping every other aspect of the algorithm the same. We perform XCO2 retrievals on measurements from the OCO-2 instrument and apply quality filters and parametric bias correction. We find that the central 50% of scene-by-scene differences in XCO2 between retrieval sets, after threshold filtering and bias correction, that use different fast RT methods, are less than 0.40 ppm for land scenes, and less than 0.11 ppm for ocean scenes. Significant regional differences larger than 0.3 ppm are observed and further studies with larger samples and regional-scale subsets need to be undertaken to fully understand the impact on applications that utilize space-based XCO2.
  • Keywords:
  • Source:
    Atmosphere, 11(11), 1219
  • DOI:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1