Improved cloudy-sky snow albedo estimates using passive microwave and VIIRS data
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Improved cloudy-sky snow albedo estimates using passive microwave and VIIRS data

Filetype[PDF-4.05 MB]



Details:

  • Journal Title:
    ISPRS Journal of Photogrammetry and Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Land surface albedo (LSA) is an essential component of the surface radiation budget, and has been retrieved extensively as a basic remote sensing product; however, daily LSA products suffer from extensive data gaps primarily caused by cloud cover. Accordingly, several gap-filling methods were developed (e.g., spatiotemporal interpolation and data fusion with albedo climatology), although the traditional methods are limited by cloud scale and surface heterogeneity. Further, as the largest varying surface landscape feature, seasonal snow cover substantially influences LSA and represents a major uncertainty factor of gap recovery because previous studies failed to employ actual surface signals to capture such ephemeral but intense albedo changes under cloud cover. To address this issue, a three-step framework was proposed for estimating 1 km cloudy-sky LSA using passive microwave (PMW) data, albedo climatology, and Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky albedo: (1) All-sky snow albedo was estimated from PMW brightness temperatures using a statistical model, (2) Continuous albedo dynamics were generated by combining the all-sky snow albedo with snow-free climatological albedo, and (3) The 1 km cloudy-sky LSA was predicted after filtering 1 km VIIRS clear-sky LSA by the albedo dynamic series. PMW-derived snow albedo was assessed over the Contiguous US (CONUS), and the final 1 km cloudy-sky LSA was validated across 10 sites from SURFRAD and Core AmeriFlux in 2013. Based on the comparison with high-quality MODIS pixels, the estimated snow albedo yielded an overall RMSE of 0.064 over CONUS, with a bias of −0.010 (R2 = 0.845). The recovered 1 km cloudy-sky LSA produced RMSEs of 0.074 (0.137) for all (snow) samples, a significant improvement over the Global Land Surface Satellite (GLASS) gap-free albedo products especially on snow cases (p-value = 0.027). Corresponding RMSE in calculating surface net radiation was also decreased by 38.91 W·m−2; and anomalous snow samples were corrected as well. The temporal analysis and all-sky LSA mapping suggest that the recovered LSA has satisfactory spatiotemporal continuity, and successfully captured details of spatiotemporal variability, especially for ephemeral snow events. This study provides an innovative solution to recover gaps in LSA data, and considerably improves the LSA accuracy under cloud cover, which can inform snow melting modeling, hazard forecasting, and irrigation management.
  • Keywords:
  • Source:
    ISPRS Journal of Photogrammetry and Remote Sensing 196 (2023) 340–355
  • DOI:
  • Format:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1