The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
A Compound Faulting Model for the 1975 Kalapana, Hawaii, Earthquake, Landslide, and Tsunami
-
2021
-
Source: Journal of Geophysical Research: Solid Earth, 126(11)
Details:
-
Journal Title:Journal of Geophysical Research: Solid Earth
-
Personal Author:
-
NOAA Program & Office:
-
Description:The Kalapana, Hawaii, MW 7.7 earthquake on November 29, 1975 generated a local tsunami with at least 14.3 m runup on the southeast shore of Hawaii Island adjacent to Kilauea Volcano. This was the largest locally generated tsunami since the great 1868 Ka'u earthquake located along-shore to the southwest. Well-recorded tide gauge and runup observations provide a key benchmark for studies of statewide tsunami hazards from actively deforming southeast Hawaii Island. However, the source process of the earthquake remains controversial, with coastal landsliding and/or offshore normal or thrust faulting mechanisms having been proposed to reconcile features of seismic, geodetic, and tsunami observations. We utilize these diverse observations for the 1975 Kalapana earthquake to deduce a compound faulting model that accounts for the overall tsunamigenesis, involving both landslide block faulting along the shore and slip on the island basal décollement. Thrust slip of 4.5–8.0 m on the offshore décollement produces moderate near-field runup but controls the far-field tsunami. The slip distribution implies that residual strain energy was available for the May 4, 2018 MW 7.2 thrust earthquake during the Kilauea-East Rift Zone eruption. Local faulting below land contributes to geodetic and seismic observations, but is non-tsunamigenic and not considered. Slip of 4–10 m on landslide-like faults, which extend from the Hilina Fault Zone scarp to offshore shallowly dipping faults reaching near the seafloor, triples the near-field tsunami runup. This compound model clarifies the roles of the faulting components in assessing tsunami hazards for the Hawaiian Islands.
-
Keywords:
-
Source:Journal of Geophysical Research: Solid Earth, 126(11)
-
DOI:
-
ISSN:2169-9313;2169-9356;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Place as Subject:
-
Rights Information:Other
-
Compliance:CHORUS
-
Main Document Checksum:
-
Download URL:
-
File Type: