U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Joint modeling of teleseismic and tsunami wave observations to constrain the 16 September 2015 Illapel, Chile,Mw 8.3 earthquake rupture process

Supporting Files


Details

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The 16 September 2015 Illapel, Chile, Mw 8.3 earthquake ruptured ~170 km along the plate boundary megathrust fault from 30.0°S to 31.6°S. A patch of offshore slip of up to 10 m extended to near the trench, and a patch of ~3 m slip occurred downdip below the coast. Aftershocks fringe the large-slip zone, extending along the coast from 29.5°S to 32.5°S between the 1922 and 1971/1985 ruptures. The coseismic slip distribution is determined by iterative modeling of teleseismic body waves as well as tsunami signals recorded at three regional DART stations and tide gauges immediately north and south of the rupture. The tsunami observations tightly delimit the rupture length, suppressing bilateral southward extension of slip found in unconstrained teleseismic-wave inversions. The spatially concentrated rupture area, with a stress drop of ~3.2 MPa, is validated by modeling DART and tide gauge observations in Hawaii, which also prove sensitive to the along-strike length of the rupture.
  • Keywords:
  • Source:
    Geophysical Research Letters, 43(9), 4303-4312
  • DOI:
  • ISSN:
    0094-8276 ; 1944-8007
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
    urn:sha256:93139564a5f9d7c036fbeeb4155e877f89a727c0c36bb99d89cd46a11ae7626d
  • Download URL:
  • File Type:
    Filetype[PDF - 3.32 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.