Persistent landfalling atmospheric rivers over the west coast of North America
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Persistent landfalling atmospheric rivers over the west coast of North America

Filetype[PDF-10.35 MB]

Select the Download button to view the document
This document is over 5mb in size and cannot be previewed


  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Description:
    Landfalling atmospheric rivers (ARs) are linked to heavy precipitation and extreme flooding, and are well known along the western coast of North America. The hydrological impacts of ARs upon landfall are correlated with their duration and magnitude. In order to improve the forecast of these hydrologically significant landfalling events, a better understanding of how they differ from other landfalling events must be established through an investigation of the mechanisms leading to their development prior to landfall. A subset of persistent landfalling AR events between 30°N and 50°N is identified in 3-hourly Modern-Era Retrospective Analysis for Research and Applications reanalysis and validated against existing data sets. These events are identified as features in the low troposphere with high moisture transport and extended geometry that persist over a limited region of the coastline for longer than 63 h (85th percentile of AR duration). A composite analysis shows that persistent events have distinct thermodynamical and dynamical characteristics compared to all AR events. They are characterized by greater moisture content, suggestive of Pineapple Express-type events, a perturbed upper level jet and anticyclonic overturning of potential vorticity contours associated with anticyclonic Rossby wave breaking. Moreover, the location of the Rossby wave breaking is shifted inland compared to all AR events. Analogue analysis of the 500 hPa geopotential height anomalies is used to find nonpersistent events with similar dynamical characteristics to persistent events. Despite their similarity to persistent events, nonpersistent analogues show very little shift toward longer duration. A comparison of the development of persistent and nonpersistent analogues shows that persistent events have much greater moisture content.
  • Source:
    Journal of Geophysical Research: Atmospheres, 121(22)
  • ISSN:
  • Format:
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.24