Impact of aerosols on precipitation from deep convective clouds in eastern China
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Impact of aerosols on precipitation from deep convective clouds in eastern China

Filetype[PDF-755.08 KB]



Details:

  • Journal Title:
    Journal of Geophysical Research: Atmospheres
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We analyzed the impact of aerosols on precipitation based on 3 years of 3-hourly observations made in heavily polluted eastern China. The probability of precipitation from different cloud types was calculated using International Satellite Cloud Climatology Project cloud data and gauge-based hourly precipitation data. Because deep convective clouds have the largest precipitation probability, the influence of aerosols on the precipitation from such clouds was studied in particular. Aerosol properties were taken from the Modern-Era Retrospective Analysis for Research and Applications Aerosol Reanalysis data set. As aerosol optical depth increased, rainfall amounts from deep convective clouds increased at first and then decreased. The descending part of the trend is likely due to the aerosol radiative effect. Downwelling solar radiative fluxes at the surface decreased as aerosol optical depth increased. The decrease in solar radiation led to a decrease in ground heat fluxes and convective available potential energy, which is unfavorable for development of convective clouds and precipitation. The tendencies for lower cloud top temperatures, lower cloud top pressures, and higher cloud optical depths as a response to larger aerosol optical depths suggest the invigoration effect. Vertical velocity, relative humidity, and air temperature from the National Centers for Environmental Prediction Climate Forecast System Reanalysis were sorted to help investigate if the trends are dependent on any environmental conditions. How dynamic and microphysical factors strengthen or mitigate the impact of aerosols on clouds and precipitation and more details about their interplay should be studied further using more observations and model simulations.
  • Keywords:
  • Source:
    Journal of Geophysical Research: Atmospheres, 121(16), 9607-9620
  • DOI:
  • ISSN:
    2169-897X;2169-8996;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1