Significant Effective Radiative Forcing of Stratospheric Wildfire Smoke
Supporting Files
Public Domain
-
2022
-
-
File Language:
Details
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:The radiative forcing (RF) of volcanic sulfate is well quantified. However, the RF of pyrocumulonimbus (pyroCb) smoke with absorbing carbonaceous aerosols has not been considered in climate assessment reports. With the Community Earth System Model, we studied two record-breaking wildfire events, the 2017 Pacific Northwest Event (PNE) and the 2019–2020 Australian New Year event (ANY), that perturbed stratospheric chemistry and the earth's radiation budget. We calculated a global annual-mean effective RF (ERF) of −0.04 ± 0.02 and −0.17 ± 0.02 W/m2 at the top of the atmosphere (TOA) for PNE and ANY, respectively. The complexity of longwave RF led to an uncertainty of about 50% in the ERF at the TOA among climate models. We found that modeled ERF from wildfire smoke was 70%–270% more negative than the ERF of mass-equivalent sulfate aerosol, highlighting its important role in the climate radiative budget.
-
Keywords:
-
Source:Geophysical Research Letters, 49(17)
-
DOI:
-
ISSN:0094-8276 ; 1944-8007
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Submitted
-
Main Document Checksum:urn:sha256:3160624df000488724c481aa0e384ae3eefe90869e07107bb3b7648a9bf35c5a
-
Download URL:
-
File Type:
Supporting Files
File Language:
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like
Checkout our Featured at Stacks Home