U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

An analytical and numerical study of long wave run-up in U-shaped and V-shaped bays



Details

  • Journal Title:
    Applied Mathematics and Computation
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    By assuming the flow is uniform along the narrow long bays, the 2-D nonlinear shallow-water equations are reduced to a linear semi-axis variable-coefficient 1-D wave equation via the generalized Carrier–Greenspan transformation. The run-up of long waves in constantly sloping U-shaped and V-shaped bays is studied both analytically and numerically within the framework of the 1-D nonlinear shallow-water theory. An analytic solution, in the form of a double integral, to the resulting linear wave equation is obtained by utilizing the Hankel transform, and consequently the solution to the tsunami run-up problem is developed by applying the inverse generalized Carrier–Greenspan transform. The presented solution is a generalization of the solutions found by Carrier et al. (2003) and Didenkulova and Pelinovsky (2011) for the case of a plane beach and a parabolic bay, respectively. The shoreline dynamics in U-shaped and V-shaped bays are computed via a double integral through standard integration techniques.
  • Keywords:
  • Source:
    Applied Mathematics and Computation, 279: 187-197
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    CHORUS
  • Main Document Checksum:
    urn:sha256:99553cc87a23d9bd0cc0c6bf405397fb8ea087d23778e40d9f6249d58c6f8ac0
  • Download URL:
  • File Type:
    Filetype[PDF - 565.84 KB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.