Simulating the oceans chlorophyll dynamic range from coastal upwelling to oligotrophy
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Simulating the oceans chlorophyll dynamic range from coastal upwelling to oligotrophy

Filetype[PDF-4.10 MB]



Details:

  • Journal Title:
    Progress in Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The measured concentration of chlorophyll a in the surface ocean spans four orders of magnitude, from ∼0.01 mg m−3 in the oligotrophic gyres to >10 mg m−3 in coastal zones. Productive regions encompass only a small fraction of the global ocean area yet they contribute disproportionately to marine resources and biogeochemical processes, such as fish catch and coastal hypoxia. These regions and/or the full observed range of chlorophyll concentration, however, are often poorly represented in global earth system models (ESMs) used to project climate change impacts on marine ecosystems. Furthermore, recent high resolution (∼10 km) global earth system simulations suggest that this shortfall is not solely due to coarse resolution (∼100 km) of most global ESMs. By integrating a global biogeochemical model that includes two phytoplankton size classes (typical of many ESMs) into a regional simulation of the California Current System (CCS) we test the hypothesis that a combination of higher spatial resolution and enhanced resolution of phytoplankton size classes and grazer linkages may enable global ESMs to better capture the full range of observed chlorophyll. The CCS is notable for encompassing both oligotrophic (<0.1 mg m−3) and productive (>10 mg m−3) endpoints of the global chlorophyll distribution. As was the case for global high-resolution simulations, the regional high-resolution implementation with two size classes fails to capture the productive endpoint. The addition of a third phytoplankton size class representing a chain-forming coastal diatom enables such models to capture the full range of chlorophyll concentration along a nutrient supply gradient, from highly productive coastal upwelling systems to oligotrophic gyres. Weaker ‘top-down’ control on coastal diatoms results in stronger trophic decoupling and increased phytoplankton biomass, following the introduction of new nutrients to the photic zone. The enhanced representation of near-shore chlorophyll maxima allows the model to better capture coastal hypoxia along the continental shelf of the North American west coast and may improve the representation of living marine resources.
  • Keywords:
  • Source:
    Progress in Oceanography, 168: 232-247
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1