Multi-Day Water Residence Time As A Mechanism For Physical And Biological Gradients Across Intertidal Flats
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Multi-Day Water Residence Time As A Mechanism For Physical And Biological Gradients Across Intertidal Flats

Filetype[PDF-1.07 MB]



Details:

  • Journal Title:
    Estuarine, Coastal and Shelf Science
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Tidal flats with shallow-sloping bathymetry under meso-to macrotidal conditions allow organisms to occupy similar tidal elevations at different distances from subtidal channels. As water floods or ebbs across such tidal flats during a single tidal cycle, upstream organisms may modify water properties such as chlorophyll concentration, while physiochemical properties may change due to close association with sediments. Here we report evidence for an additional mechanism establishing cross-shore gradients: multi-day water residence times, in the sense that even if water completely drains into subtidal channels at low tide, a large fraction returns to the flats on the next high tide. We applied circulation modeling and empirical measurements of water properties and benthic secondary production to a 1-km-wide tidal flat in Willapa Bay, Washington, USA. From the circulation model, water parcels on this intertidal flat have residence times up to 2 d, that is, water found on the flat at one high tide returns to the intertidal zone for a median of 4 successive semidiurnal high tides. Modeled residence times generally increased towards shore. Four empirical datasets showed cross-shore gradients consistent with modeled residence times: Salinity time series lagged towards shore; water column chlorophyll declined towards shore at fixed stations (near-bottom) and in surface transects more than could be explained by benthic suspension-feeding during a single transit of water; and oyster (Magallana = Crassostrea gigas) condition declined 25% over 0.5 km from channel to shore, independent of tidal elevation. One environmental measurement was more consistent with within-tide change, as water temperatures warmed towards shore on afternoon flood tides but showed no tidal-cycle lags. Taken together, these patterns suggest that multi-day water residence times can contribute to environmental heterogeneity from channel to shore on tidal flats, acting orthogonally to well-recognized estuarine gradients in residence time from ocean to river.
  • Keywords:
  • Source:
    Estuarine, Coastal and Shelf Science, 227: 106303
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1