U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Diagnosing Hawaii’s Recent Drought



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Hawaii’s recent drought is among the most severe on record. Wet-season (November–April) rainfall deficits during 2010–19 rank second lowest among consecutive 10-yr periods since 1900. Various lines of empirical and model evidence indicate a principal natural atmospheric cause for the low rainfall, mostly unrelated to either internal oceanic variability or external forcing. Empirical analysis reveals that traditional factors have favored wetness rather than drought in recent decades, including a cold phase of the Pacific decadal oscillation in sea surface temperatures (SSTs) and a weakened Aleutian low in atmospheric circulation. But correlations of Hawaiian rainfall with patterns of Pacific sea level pressure and SSTs that explained a majority of its variability during the twentieth century collapsed in the twenty-first century. Atmospheric model simulations indicate a forced decadal signal (2010–19 vs 1981–2000) of Aleutian low weakening, consistent with recent observed North Pacific circulation. However, model ensemble means do not generate reduced Hawaiian rainfall, indicating that neither oceanic boundary forcing nor a weakened Aleutian low caused recent low Hawaiian rainfall. Additional atmospheric model experiments explored the role of anthropogenic forcing. These reveal a strong sensitivity of Hawaiian rainfall to details of long-term SST change patterns. Under an assumption that anthropogenic forcing drives zonally uniform SST warming, Hawaiian rainfall declines, with a range of 3%–9% among three models. Under an assumption that anthropogenic forcing also increases the equatorial Pacific zonal SST gradient, Hawaiian rainfall increases 2%–6%. Large spread among ensemble members indicates that no forced signals are detectable.
  • Keywords:
  • Source:
    Journal of Climate, 35(13), 3997-4012
  • DOI:
  • Format:
  • Document Type:
  • Place as Subject:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:1b3f69102aad172cef6d648023ffb1f82e5b5daee3a6deb15e2381318a5e13e4
  • Download URL:
  • File Type:
    Filetype[PDF - 14.42 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.