Rapid Evolution of Cool Season, Low-CAPE Severe Thunderstorm Environments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Rapid Evolution of Cool Season, Low-CAPE Severe Thunderstorm Environments

Filetype[PDF-2.82 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • NOAA Program & Office:
  • Description:
    Low-CAPE (i.e., CAPE ≤ 1000 J kg−1) severe thunderstorms are common in the greater southeastern United States (including the Tennessee and Ohio valleys). These events are often poorly forecasted, and the environments in which they occur may rapidly evolve. Real-data simulations of 11 low-CAPE severe events and 6 low-CAPE nonsevere events were performed at convection-allowing resolution. Some amount of surface-based destabilization occurred during all simulated events over the 3-h period prior to convection. Most simulated severe events experienced comparatively large destabilization relative to the nonsevere events as a result of surface warming, cooling aloft, and surface moistening. The release of potential instability by large-scale forcing for ascent likely influenced the cooling aloft in some cases. Surface warming was attributable primarily to warm advection and appeared to be an important discriminator between severe and nonsevere simulated events. Severe events were also found to have larger low-level wind shear than nonsevere events, particularly during nocturnal cases. Because of the rapid destabilization that occurred within 3 h in the simulated events, it is evident that 3–6-hourly model output may not be adequate for forecasting severe events in high-shear, low-CAPE environments. Monitoring of high-resolution model forecasts and surface observations may be necessary to identify a rapidly changing severe environment.
  • Source:
    Weather and Forecasting, 32(2), 763-779
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26