Insights on Sea Ice Data Assimilation from Perfect Model Observing System Simulation Experiments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Insights on Sea Ice Data Assimilation from Perfect Model Observing System Simulation Experiments

Filetype[PDF-2.53 MB]


  • Journal Title:
    Journal of Climate
  • Description:
    Simulating Arctic sea ice conditions up to the present and predicting them several months in advance has high stakeholder value, yet remains challenging. Advanced data assimilation (DA) methods combine real observations with model forecasts to produce sea ice reanalyses and accurate initial conditions for sea ice prediction. This study introduces a sea ice DA framework for a sea ice model with a parameterization of the ice thickness distribution by resolving multiple thickness categories. Specifically, the Los Alamos Sea Ice Model, version 5 (CICE5), is integrated with the Data Assimilation Research Testbed (DART). A series of perfect model observing system simulation experiments (OSSEs) are designed to explore DA algorithms within the ensemble Kalman filter (EnKF) and the relative importance of different observation types. This study demonstrates that assimilating sea ice concentration (SIC) observations can effectively remove SIC errors, with the error of total Arctic sea ice area reduced by about 60% annually. When the impact of SIC observations is strongly localized in space, the error of total volume is also modestly improved. The largest simulation improvements are produced when sea ice thickness (SIT) and SIC are jointly assimilated, with the error of total volume decreased by more than 70% annually. Assimilating multiyear sea ice concentration (MYI) can reduce error in total volume by more than 50%. Assimilating MYI produces modest improvements in snow depth (errors are reduced by around 16%), while assimilating SIC and SIT has no obvious influence on snow depth. This study also suggests that different observation types may need different localization distances to optimize DA performance.
  • Source:
    Journal of Climate, 31(15), 5911-5926
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at

Version 3.26