Why are Temperature and Upward Wave Activity Flux Positively Skewed in the Polar Stratosphere
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Why are Temperature and Upward Wave Activity Flux Positively Skewed in the Polar Stratosphere

Filetype[PDF-1.28 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The distribution of temperatures in the wintertime polar stratosphere is significantly positively skewed, which has important implications for the characteristics of ozone chemistry and stratosphere–troposphere coupling. The typical argument for why the temperature distribution is skewed is that radiative balance sets a firm lower limit, while planetary wave driving can force much larger positive anomalies in temperature. However, the distribution of the upward Eliassen–Palm (EP) flux is also positively skewed, and this suggests that dynamics may play an important role in setting the skewness of the temperature distribution. This study explains the skewness of the upward EP flux distribution by appealing to the ideas of linear interference. In this framework, fluxes are decomposed into a linear term (LIN) that measures the coherence of the wave anomaly and the climatological wave and an additional nonlinear term (NONLIN) that depends only on the wave anomaly. It is shown that when filtered by wavenumber, there is a clear nonlinear dependence between LIN and NONLIN: the terms cancel when LIN is negative, but they reinforce each other when LIN is positive. This leads to the positive skewness of the upward wave activity flux. A toy model of wave interference is constructed, and it is shown that the westward vertical tilt of the climatological wave is the key ingredient to a positively skewed upward EP flux distribution. The causes of the skews of the LIN and NONLIN distributions themselves are shown to be related to relationships between wave phase and amplitude, and wave phase and vertical tilt, respectively.
  • Keywords:
  • Source:
    Journal of Climate, 31(1), 115-130
  • DOI:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at

Version 3.27.2