U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

The Impact of Ozone-Depleting Substances on Tropical Upwelling as Revealed by the Absence of Lower-Stratospheric Cooling since the Late 1990s



Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The impact of ozone-depleting substances on global lower-stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower-stratospheric temperature trends has proven more challenging. While the tropical lower-stratospheric cooling observed from 1979 to 1997 has been linked to tropical ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979–97 tropical ozone trends are believed to originate from enhanced upwelling, which, it is often stated, would be driven by increasing concentrations of well-mixed greenhouse gases. This study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, argues that trends in ozone-depleting substances, not well-mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone-depleting substances are key drivers of tropical upwelling and, more generally, of the entire Brewer–Dobson circulation.
  • Keywords:
  • Source:
    Journal of Climate, 30(7), 2523-2534
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
    urn:sha256:2f1c3fbdea08f3c76526553c6013a12d4b8f2f86289350914069da2d4f21bef0
  • Download URL:
  • File Type:
    Filetype[PDF - 2.76 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.