Analysis of the 16 May 2015 Tipton Oklahoma EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Analysis of the 16 May 2015 Tipton Oklahoma EF-3 Tornado at High Spatiotemporal Resolution Using the Atmospheric Imaging Radar

Filetype[PDF-5.35 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In this study, data collected by the Atmospheric Imaging Radar (AIR) are analyzed in conjunction with WSR-88D data (KFDR) for a tornado near Tipton, Oklahoma, on 16 May 2015. The analysis presented herein utilizes PPIs from both radars, polarimetric data from KFDR, time–height plots from the AIR, and a ground-based velocity track display (GBVTD) analysis. This study is novel in that it uses high-resolution mobile radar data (update time of 6–7 s) in tandem with polarimetric data from KFDR in order to identify possible areas of debris, including a debris ring contained within the outer vortex circulation. Leveraging the high spatiotemporal resolution of the AIR with the polarimetric capability of KFDR leads to analysis of reflectivity distributions, debris lofting, kinematic changes, and oscillations in tornado intensity during a portion of the mature stage of the tornado, with a particular focus on the relationship between changes in the reflectivity field and dynamical changes around the tornado. Debris is lofted in a high-reflectivity concentric ring of increasing radius and height around the tornado over several minutes, within the outer weak-echo hole (WEH). Simultaneously, debris lofting and asymmetric reflectivity distribution around the WEH coincide with changes in vortex tilt on multiple occasions. In one instance, hydrometeor fallout appears to precede a possible descending reflectivity core. Using the GBVTD results, near-surface convergence intensifies at the same time and location as when the debris ring is lofted. Additionally, strengthening of the tornado via multiple modes of vertical evolution (i.e., bottom-up intensification over time vs simultaneous intensification throughout the lowest few hundred meters) is observed.
  • Keywords:
  • Source:
    Monthly Weather Review, 146(7), 2103-2124
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1