Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget Part II Evaluation of the GFDL-FLOR Coupled GCM
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields



Publication Date Range:


Document Data


Document Type:






Clear All

Query Builder

Query box

Clear All

For additional assistance using the Custom Query please check out our Help Page


Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget Part II Evaluation of the GFDL-FLOR Coupled GCM

Filetype[PDF-4.08 MB]


  • Journal Title:
    Journal of Climate
  • Description:
    The heat budget of the Pacific equatorial cold tongue (ECT) is explored using the GFDL-FLOR coupled GCM (the forecast-oriented low ocean resolution version of CM2.5) and ocean reanalyses, leveraging the two-layer framework developed in Part I. Despite FLOR’s relatively weak meridional stirring by tropical instability waves (TIWs), the model maintains a reasonable SST and thermocline depth in the ECT via two compensating biases: 1) enhanced monthly-scale vertical advective cooling below the surface mixed layer (SML), due to overly cyclonic off-equatorial wind stress that acts to cool the equatorial source waters; and 2) an excessive SST contrast between the ECT and off-equator areas, which boosts the equatorward heat transport by TIWs. FLOR’s strong advective cooling at the SML base is compensated by strong downward diffusion of heat out of the SML, which then allows FLOR’s ECT to take up a realistic heat flux from the atmosphere. Correcting FLOR’s climatological SST and wind stress biases via flux adjustment (FA) leads to weaker deep advective cooling of the ECT, which then erodes the upper-ocean thermal stratification, enhances vertical mixing, and excessively deepens the thermocline. FA does strengthen FLOR’s meridional shear of the zonal currents in the east Pacific, but this does not amplify either the simulated TIWs or their equatorward heat transport, likely due to FLOR’s coarse zonal ocean resolution. The analysis suggests that to advance coupled simulations of the ECT, improved winds and surface heat fluxes must go hand in hand with improved subseasonal and parameterized ocean processes. Implications for model development and the tropical Pacific observing system are discussed.
  • Source:
    Journal of Climate, 31(24), 9987-10011
  • Document Type:
  • Rights Information:
  • Compliance:
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26