Assessing the Accuracy of the Cloud and Water Vapor Fields in the Hurricane WRF HWRF Model Using Satellite Infrared Brightness Temperatures
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Assessing the Accuracy of the Cloud and Water Vapor Fields in the Hurricane WRF HWRF Model Using Satellite Infrared Brightness Temperatures

Filetype[PDF-11.49 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • NOAA Program & Office:
  • Description:
    In this study, cycled forecast experiments were performed to assess the ability of different cloud microphysics and cumulus parameterization schemes in the Hurricane Weather Research and Forecasting (HWRF) Model to accurately simulate the evolution of the cloud and moisture fields during the entire life cycle of Hurricane Edouard (2014). The forecast accuracy for each model configuration was evaluated through comparison of observed and simulated Geostationary Operational Environmental Satellite-13 (GOES-13) infrared brightness temperatures and satellite-derived tropical cyclone intensity estimates computed using the advanced Dvorak technique (ADT). Overall, the analysis revealed a large moist bias in the mid- and upper troposphere during the entire forecast period that was at least partially due to a moist bias in the initialization datasets but was also affected by the microphysics and cumulus parameterization schemes. Large differences occurred in the azimuthal brightness temperature distributions, with two of the microphysics schemes producing hurricane eyes that were much larger and clearer than observed, especially for later forecast hours. Comparisons to the forecast 10-m wind speeds showed reasonable agreement (correlations between 0.58 and 0.74) between the surface-based intensities and the ADT intensity estimates inferred via cloud patterns in the upper troposphere. It was also found that model configurations that had the smallest differences between the ADT and surface-based intensities had the most accurate track and intensity forecasts. Last, the cloud microphysics schemes had the largest impact on the forecast accuracy.
  • Source:
    Monthly Weather Review, 145(5), 2027-2046
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26