WindFlux Feedbacks and Convective Organization during the November 2011 MJO Event in a High-Resolution Model
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

WindFlux Feedbacks and Convective Organization during the November 2011 MJO Event in a High-Resolution Model

Filetype[PDF-7.63 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The November 2011 Madden–Julian oscillation (MJO) event during the Dynamics of the MJO (DYNAMO) field campaign is simulated with the Regional Atmospheric Modeling System (RAMS) cloud-resolving model to examine the relationship between precipitation and surface latent heat flux (LHFLX) for deep convective clusters within the MJO and to discern the importance of surface LHFLX for organizing MJO convection. First, a simulation similar in size to the DYNAMO northern sounding array was run with interactive surface fluxes. Composites for precipitation, surface LHFLX, wind speed, wind vectors, and near-surface specific humidity are described for various-sized convective clusters during different MJO regimes. The precipitation–LHFLX relationship generally evolves as follows for an individual cluster. About 2 h before cluster identification, the maximum LHFLX occurs upwind of maximum precipitation. As cluster identification time is approached, LHFLX and precipitation maxima become coincident. At and after the cluster is identified, maximum LHFLXs move downwind of the precipitation maximum with a local minimum in LHFLXs behind the precipitation maximum.

    Sensitivity simulations with spatially homogenized LHFLXs were then run to determine the impacts of local LHFLX feedbacks on convective organization. Using area-averaged convective versus stratiform precipitation fraction and a simple convective aggregation index to quantify organization, no systematic difference in convective organization was detected between the control and sensitivity simulations, suggesting that local LHFLX variability is not important to convective organization in this model. Implications of these results are discussed.

  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences, 75(1), 57-84
  • DOI:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    CHORUS
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1